Activity-dependent enhancement of synaptic transmission in hippocampal slices treated with the phosphatase inhibitor calyculin A.
نویسندگان
چکیده
The role of protein phosphatases in regulating synaptic transmission in the CA1 region of the hippocampus was examined using slices pretreated with calyculin A, a specific inhibitor of protein phosphatases 1 and 2A. Stimulation of afferents at 1 Hz (but not 0.1 Hz) for periods of 5-10 min caused a long-lasting enhancement of synaptic transmission. The increase in synaptic responses was not due to a change in fiber excitability, as there was a shift to the left in the input-output curve following the synaptic enhancement. The enhancement was observed only in the input that received the 1 Hz stimulation and not in an independent control pathway, indicating that the increase in synaptic strength is input specific and limited to repetitively activated synapses. Applying 1 Hz stimulation when synaptic transmission was blocked by replacing extracellular Ca2+ with Mg2+ prevented or significantly reduced any change in synaptic efficacy after reperfusion with normal Ca(2+)-containing medium. In contrast, 1 Hz stimulation given when synaptic transmission was blocked by non-NMDA and NMDA glutamate receptor antagonists still caused a synaptic enhancement following washout of the antagonists. The enhancement of synaptic transmission also was not blocked by loading CA1 cells with the calcium chelator BAPTA. Thus, influx of Ca2+ into presynaptic elements is required for the synaptic enhancement elicited by 1 Hz stimulation in calyculin A-treated hippocampal slices. Consistent with the activation of processes that cause an increase in transmitter release, the magnitude of paired-pulse facilitation decreased following the synaptic enhancement, and the NMDA receptor-mediated component of the synaptic response was increased by 1 Hz stimulation. These results suggest that when protein phosphatases are inhibited by calyculin A, prolonged periods of 1 Hz stimulation lead to activation of presynaptic Ca(2+)-dependent protein kinases, resulting in a persistent increase in evoked transmitter release. They also indicate that the activity of presynaptic protein phosphatases is critically important for limiting increases in synaptic strength following repetitive afferent activity.
منابع مشابه
Role of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...
متن کاملAdenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation.
Activation of the Ca2+- and calmodulin-dependent protein kinase II (CaMKII) and its conversion into a persistently activated form by autophosphorylation are thought to be crucial events underlying the induction of long-term potentiation (LTP) by increases in postsynaptic Ca2+. Because increases in Ca2+ can also activate protein phosphatases that oppose persistent CaMKII activation, LTP inductio...
متن کاملModulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملThe effect of ketamine on synaptic transmission and synaptic plasticity in CA1 area of rat hippocampal slices
The effect of ketamine (1-100 µM), which has NMDA receptor antagonist properties, on synaptic transmission and long-term potentiation (LTP) in CAl area of rat hippocampus was examined in vitro. Field potentials were recorded in pyramidal cell layer following Schaffer collateral stimulation. Primed-burst stimulation (PEs) was used for induction of LTP. The amplitude of population spiks (PS) was ...
متن کاملAlterations in the balance of protein kinase/phosphatase activities parallel reduced synaptic strength during aging.
The current research examined the regulation of synaptic strength by protein phosphorylation during aging. Bath application of the protein phosphatase 1 and 2A (PP1 and PP2A) inhibitor calyculin A (1 microM) enhanced CA3-CA1 synaptic strength in hippocampal slices from aged male (20-24 mo) but not from young adult male (4-6 mo) Fischer 344 rats. Similarly, injection of the PP1 and PP2A inhibito...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 10 شماره
صفحات -
تاریخ انتشار 1994